SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY SAULT STE. MARIE, ON

COURSE OUTLINE

COURSE TITLE:	ELECTRONIC CIRCUIT ANALYSIS and DESIGN
CODE NO.:	ELN 320-7 SEMESTER: FIFTH
PROGRAM:	ELECTRONIC ENGINEERING TECHNOLOGY (4023)
AUTHOR:	PETER SZILAGYI
DATE:	SEPT. 1994 PREVIOUS OUTLINE DATED: SEPT. 1993
APPROVED:	DEAN DATE 94-08-29

III. TOPICS TO BE COVERED:	Approximate time frame
	Theory/Laboratory hours
Block 1: Schematic capture and PCI	3 design 2/3
Block 2: Heatsink design	3/6
Block 3: Two port parameters	3/0
Block 4: Linear Voltage and Current Regulator design	9/9
Block 5: Switched Mode Power Suppl	ly design 15/9
Block 6: Pulse and clock generator	design 3/3
Project1 Design and build a Step-o Switched Mode Power Suppl	down Ly
Project 2 Design and build a Flybac	ck Transformer 1/3
Testing	6/3

IV. LEARNING ACTIVITIES/REQUIRED RESOURCES

Block 1: Schematic capture and PCB design.

Topic description:

- Load the Equation Keyboard in Word Perfect and assign mathematical and scientific characters to keys on your keyboard.
- Generate ASCII characters from 1 to 255 and include them in your document.
- Use ctrV to generate Math/Scientific characters in Word Perfect.
- Set up a pen plotter and a laser printer for printing from Hiwire, Smartwork and MathCad.
- Create HPGL graphic plot files and import them into Word Perfect. Edit a graphic file in Word Perfect.
- Generate a HIWIRE symbols library for MOSFETs, PWMs and other analog and digital ICs.
- Printed circuit board layout concepts, for testability and manufacturability.

ELN 320 Code No.

Block 3: Two port parameters applied to BJTs.

Topic description:

- Black box theory.

- The hybrid defining equations.

- Two port, hybrid equivalent network.

- The definition of the short circuit output and the open circuit input hybrid parameters.

- Two port device connected to source and load.

- Hybrid parameters applied to BJT's.

- The meaning of h_{11} , h_{12} , h_{21} and h_{22} .

- CE, CB, and CC hybrid equivalent circuits.

- Input and output impedance, voltage gain and current gain of a transistor amplifier, based on hybrid parameters.
- How to read h parameters from the data book.

Learning activities:

Manufacturers data books specify the hybrid transistor parameters. Participants will learn how to interpret and use hybrid parameters in amplifier design.

Required resources:

Overheads, handouts, MathCad software and access to the computers available in the laboratory.

Block 4: Power MOSFET transistors.

Topic description:

- MOSFET structure, operation and physics.

- Advantages of power MOSFETs.

- Basic characteristics of power MOSFETs.

- Safe operating areas.

- Gate drive requirements.

- Gate drivers for power MOSFETs.

Learning activities:

Listen to lectures on MOSFET theory and applications. Learn how to test a MOSFET in the laboratory.

Required resources:

Overheads and handouts. A relevant book by Motorola is available in the college library. (Power MOSFET transistor data.)

ELN 320 Code No.

Topic description:

- Classes of Switched Mode voltage regulators.
- Buck, Boost, and Buck-Boost Converters.
- BJT and MOSFET switches.
- Continuous Current Mode (CCM) and Discontinuous Current Mode (DCM) of operation.
- Voltage Mode and Current Mode topologies.
- Switched mode voltage regulators in a closed loop.
- Hysteretic control, variable frequency, variable pulse width, constant on-time, constant off-time controls.
- Isolated switched mode power supplies.
- The DC to DC transformer concept.
- The Forward Converter.
- The Flyback Converter.
- Switched mode constant current source.

Learning activities:

Lectures will cover the classification, functioning and design of switched mode power supplies. Different model switchers will be built in the laboratory.

Required resources:

Theory class and laboratory handouts will be supplied. A number of relevant reference books are available in the college library:

- 1. Rudolf P. Severns and Gordon Bloom, Modern DC-to-DC Switchmode Power Converter Circuits.
- 2. Eugene R. Hnatek, Design of Solid State Power Supplies.
- 3. Keith H. Billings, Switchmode Power Supply Handbook.
- 4. Abraham I. Pressman, Switching Power Supply Design.
- 5. George Chryssis, High Frequency Switching Power Supplies: Theory and design.
- 6. Motorola, Practical Switched Mode Power Supply design.

ELECTRONIC CIRCUIT ANALYSIS and DESIGN

ELN 320

Course name

Code No.

V. EVALUATION METHODS:

Four written tests will be conducted. Quizzes may be given without prior notice. Design assignments and hardware projects will carry the same weight as theory tests.

Grading:

Grading is done using the following definitions:

-	Consistently outstanding performanceA+	(90 - 1)	8(00
-	Outstanding performanceA	(80-	
_	Above average performanceB	(70-	,
-	Satisfactory performance	(55-	70)8
_	Unsatisfactory performance	1 1	5518